Sci. Rep.
Stuligross, C. & Williams, N.M. (2020). Pesticide and resource
stressors additively impair wild bee reproduction: Stressors additively
impair wild bees. Proc. R. Soc. B Biol. Sci. , 287.
Sutter, L., Jeanneret, P., Bartual, A.M., Bocci, G. & Albrecht, M.
(2017). Enhancing plant diversity in agricultural landscapes promotes
both rare bees and dominant crop-pollinating bees through complementary
increase in key floral resources. J. Appl. Ecol. , 54, 1856–1864.
Tamburini, G., Pereira-Peixoto, M.-H., Borth, J., Lotz, S.,
Wintermantel, D., Allan, M.J., et al. (2021a). Fungicide and
insecticide exposure adversely impacts bumblebees and pollination
services under semi-field conditions. Environ. Int. , 157, 106813.
Tamburini, G., Wintermantel, D., Allan, M.J., Dean, R.R., Knauer, A.,
Albrecht, M., et al. (2021b). Sulfoxaflor insecticide and
azoxystrobin fungicide have no major impact on honeybees in a
realistic-exposure semi-field experiment. Sci. Total Environ. ,
778, 146084.
Tosi, S., Nieh, J.C., Sgolastra, F., Cabbri, R. & Medrzycki, P. (2017).
Neonicotinoid pesticides and nutritional stress synergistically reduce
survival in honey bees. Proc. R. Soc. B Biol. Sci. , 284,
20171711.
Vanbergen, A.J., Garratt, M.P., Vanbergen, A.J., Baude, M., Biesmeijer,
J.C., Britton, N.F., et al. (2013). Threats to an ecosystem
service: Pressures on pollinators. Front. Ecol. Environ. , 11,
251–259.
Vattala, H.D., Wratten, S.D., Phillips, C.B. & Wäckers, F.L. (2006).
The influence of flower morphology and nectar quality on the longevity
of a parasitoid biological control agent. Biol. Control , 39,
179–185.
Vaudo, A.D., Patch, H.M., Mortensen, D.A., Tooker, J.F. & Grozinger,
C.M. (2016). Macronutrient ratios in pollen shape bumble bee
(Bombus impatiens ) foraging strategies and floral preferences.Proc. Natl. Acad. Sci. U. S. A. , 113, E4035–E4042.
Vaudo, A.D., Tooker, J.F., Grozinger, C.M. & Patch, H.M. (2015). Bee
nutrition and floral resource restoration. Curr. Opin. Insect
Sci. , 10, 133–141.
Vaudo, A.D., Tooker, J.F., Patch, H.M., Biddinger, D.J., Coccia, M.,
Crone, M.K., et al. (2020). Pollen protein: Lipid macronutrient
ratios may guide broad patterns of bee species floral preferences.Insects , 11.
Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics
with S . Fourth. Springer, New York.
Vollet-Neto, A., Maia-Silva, C., Menezes, C. & Imperatriz-Fonseca, V.L.
(2017). Newly emerged workers of the stingless bee Scaptotrigona
aff. depilis prefer stored pollen to fresh pollen. Apidologie ,
48, 204–210.
Wahl, O. & Ulm, K. (1983). Influence of pollen feeding and
physiological condition on pesticide sensitivity of the honey bee Apis
mellifera carnica. Oecologia , 59, 106–128.
Wintermantel, D., Locke, B., Andersson, G.K.S., Semberg, E., Forsgren,
E., Osterman, J., et al. (2018). Field-level clothianidin
exposure affects bumblebees but generally not their pathogens.Nat. Commun. , 9.
Zheng, H., Nishida, A., Kwong, W.K., Koch, H., Engel, P., Steele, M.I.,et al. (2016). Metabolism of toxic sugars by strains of the bee
gut symbiont Gilliamella apicola. MBio , 7, 1–9.
Zhu, W., Schmehl, D.R., Mullin, C.A. & Frazier, J.L. (2014). Four
common pesticides, their mixtures and a formulation solvent in the hive
environment have high oral toxicity to honey bee larvae. PLoS
One , 9.
Tables
Table 1. Azoxystrobin residue concentrations (mg
kg-1) in foraging bees exposed to different spray
treatments (control and Amistar) and resources (purple tansy, buckwheat,
floral mix). From all colonies, 2 bees were taken on either day 1 or 2
and then pooled in the six resource-treatment combinations. The limit of
quantification (LoQ) was 0.01 mg kg-1.